Brain organoids to evaluate a new therapeutic strategy for Adrenoleukodystrophy
Stephan Kemp – Department of Genetic Metabolic Diseases and Vivi Heine, Département de pédiatrie, Centre médical universitaire VU, Université d’Amsterdam, Amsterdam, Pays-Bas – ELA2019‐020C2
Description of the project
X-linked adrenoleukodystrophy (ALD) is the most common leukodystrophy. All ALD patients have a mutation in ABCD1 and accumulate very long-chain fatty acid (VLCFA) in tissues, including brain and spinal cord. In adulthood, virtually all males and >80% of women develop chronically progressive myelopathy (adrenomyeloneuropathy) for which no disease-modifying therapy is available. Hematopoietic stem cell transplantation (HSCT) and ex vivo autologous gene therapy are effective in treating cerebral ALD, but only in the early stages of brain inflammation. Unfortunately, HSCT-treated patients can still develop myelopathy in adulthood, because HSCT is only effective at halting the inflammatory component of the disease without addressing the underlying biochemical defect. This therapeutic gap highlights the need to develop effective treatments aimed at the normalization of VLCFA levels in the brain and spinal cord. Using skin cells from ALD patients we have demonstrated that saturated VLCFA induce cellular stress, with prolonged exposure resulting in cell death. This effect is not observed with mono-unsaturated VLCFA. We identified small-molecules that activate an alternative metabolic route that converts saturated to mono-unsaturated VLCFA.
Treatment of ALD cells completely corrects VLCFA levels. Treatment of the ALD mouse with these molecules added to their food results in a reduction in adrenals, spinal cord and brain. Unfortunately, are these small molecules not specific enough and cause side-effects. We are currently searching for more specific small-molecules. When found, these small-molecules must be tested in an ALD disease model. In this project we will develop a novel ALD disease model.
We already generated stem cells from control and ALD skin cells. These stem cells can be used to generate organoids, which is a miniaturized and simplified version of an organ. Interestingly, with the proper tools we can use these stem cells to generate brain organoids.
The availability of control and ALD brain organoids would be a major step forwards in the development of a therapy for ALD and other leukodystrophies. Organoids will lead to a reduction in animal studies and they are a preclinical model that better reflects the disease.
Project financed by ELA up to: 89 345 €
Stay informed
Je souhaite rester informé des avancées concernant cet article